Hitachi Backup and Recovery Software, Powered by CommVault®
Unified, Scalable Data Protection for Distributed, Heterogeneous Environments
Application Brief

April 2005
Executive Summary

By tightly integrating backup and recovery processing with the needs of mission-critical applications, a software product now offered by Hitachi Data Systems is able to match data protection services with how business users view and understand their data. Hitachi Backup and Recovery software, powered by CommVault®, leverages a powerful platform architecture designed from scratch to provide comprehensive, integrated data protection and data management of heterogeneous storage infrastructures. By linking the cost to store, protect, access, and archive information to the cost of associated storage resources needed to deliver the data, the CommVault platform allows administrators to manage data based on its value to the organization. This perspective fits well with other Application Optimized Storage™ solutions from Hitachi Data Systems and supports a more thorough understanding of IT data protection and management policies and their impact on business.
Ease of Use .. 15
 Web-accessible, Single Management Console .. 15
 Push and Silent Installation, and the CommCell Update Service ... 15
 Event Viewer and Job Controller .. 15
 Reporting and the CommCell Explorer .. 15
 Command Line Script Generator .. 16

Reliability .. 16
 CommServe ExpressRecovery .. 16
 Clustered System Support ... 16
 Restart, Operational Windows, and Job Priority ... 16
 NAS Backup and Restore with NDMP .. 17

Backup and Recovery Software: An Application-centric Approach .. 18
Introduction

Hitachi Backup and Recovery software, powered by CommVault®, leverages a powerful platform architecture designed from scratch to provide comprehensive, integrated data protection and data management of heterogeneous storage infrastructures. By linking the cost to store, protect, access, and archive information to the cost of associated storage resources needed to deliver the data, CommVault’s QiNetix™ platform allows administrators to manage data based on its value to the organization. This perspective fits well with other Application Optimized Storage™ solutions from Hitachi Data Systems and supports a more thorough understanding of IT data protection and management policies and their impact on business.

The goals of Application Optimized Storage solutions are to reduce costs, boost performance and availability, and increase functionality of the storage infrastructure. These goals are achieved using existing storage technologies that focus on application-centric data delivery, content-specific application service-level needs, comprehensive data management, and support for a solid multitier heterogeneous networked storage infrastructure.

Part of the Hitachi Data Protection Suite, which is powered by CommVault, Backup and Recovery software fits well within the scope of Application Optimized Storage solutions. It provides application-centric awareness to meet the demanding needs of business users and content-specific functionality to integrate seamlessly with Microsoft Windows and UNIX file systems, Microsoft SharePoint Portal server, Microsoft Exchange server, Oracle databases, SQL databases, Network Appliance filers, SNAP-enabled disk storage, Lotus Notes servers, and more. By tightly integrating backup and recovery processing with the needs of mission-critical applications, the product is able to match data protection services with how business users view and understand their data.

A key component of the Backup and Recovery software’s application-centric approach is a focus on business resumption, not just data backup. By focusing on restore, the software approaches data protection from the perspective of application needs rather than physical storage requirements. Backup and Recovery software gives administrators a logical view of application data protection. When a recovery is necessary, administrators need only know what kind of application the data is from, not where the data is physically stored. The software provides extensive policy-based management to aid in applying a consistent set of data protection standards throughout the organization.
Hitachi Backup and Recovery Software, Powered by CommVault

Backup and Recovery software is a proven solution to protect and increase data access. The product simplifies data protection in complex storage networks by offering a single, unified view, based on either a logical application or physical system perspective. Backup and Recovery software provides a new view and a new way of managing critical data, taking traditional backup and recovery to new industry standards for ease of use, configuration, reliability, scalability, and flexible deployment.

The Backup and Recovery software user interface logically maps client data objects to storage resources—tape libraries, optical storage, and RAID. Storage policies—logical profiles created by the administrator—specify attributes for retention, storage usage, and organization of the backup data streams. Policies ease administration and can be assigned to virtually any information set, such as file system data or application records. Once a policy has been established it can be used with other data sets. Using storage policies, administrators are able to protect and recover application information without necessarily knowing where the data is physically stored.

Backup and Recovery software is a specialized implementation of the CommVault Common Technology Engine (CTE), as shown in Figure 1. The CTE provides storage management intelligence that enables the product to transparently adapt to any storage model—local area network (LAN), direct attached storage (DAS), network attached storage (NAS) or storage area network (SAN)—leaving administrators free to focus on protecting vital application data.

Figure 1. The Common Technology Engine Architecture

The CTE provides storage management intelligence that enables the product to transparently adapt to any storage model.
The CTE gives Backup and Recovery software the unique ability to transform quality of service (QoS) directives into actionable data protection policies. With a common database and data model that can be used standalone or shared by multiple products, the CTE provides the backbone for the CommVault QiNetix architecture and supports interaction between backup and restore, data migration, and quick recovery solutions. The common platform allows these previously independent data and storage management products to freely communicate, permitting levels of synchronous automation not previously possible.

The CTE consists of three interdependent software components: the CommServe StorageManager, client agents, and MediaAgents, as shown in Figure 2.

CommServe StorageManager

The CommServe StorageManager module provides the command and control center for the CommCell—the collection of products and agents supported by this instance of the CTE. Hosted on a standalone server in the CommCell, or on any system already housing client agents or the MediaAgent, the StorageManager processes activity requests throughout the CommCell. StorageManager hosts the central CTE database, and gives administrators access to event and job management information, the logical and physical management tree, logging information, and CommCell restart capabilities. Administrators access StorageManager from a Web-based, browser interface or from a Microsoft Management Console (MMC), allowing management control of the CommCell from anywhere on the network.

Client Agents

Client agent software modules are specific to the operation and type of data being managed, and each product using the CTE as a backbone will install different client agents. Data movement tasks are performed by iDataAgents™ (iDA) for backup, Serverless Data Manager (SDM) for serverless backup, DataMigrator™ Agents (DMA) for data migration, and QR Agents (QRA) for Quick Recovery. Data management tasks use the Storage Resource Agent (SRA) and the Device Management Connections (DMC). Depending on the activities being performed and the applications being protected, a single system may have multiple client agents installed.

Backup and Recovery software provides specialized iDA software for managing Microsoft Windows and UNIX file systems, Microsoft SharePoint Portal server, Microsoft Exchange server, Oracle databases, SQL databases, Network Appliance filers, SNAP enabled disk storage systems, Lotus Notes servers, and more.

Each managed data type on a client system requires an iDA. However, a single agent module can protect multiple instances of the same application on one server. For clustered systems and storage area network (SAN) configurations, where there are many virtual servers, or nodes, each virtual server requires a collection of agents reflecting the data types being protected. For example, if a client system hosts both Microsoft Exchange and Windows file system data, and requires backup, data migration, and quick recovery coverage, a Windows iDA, an Exchange iDA, an Exchange DMA, and a QRA must each be installed.

Client agent modules provide administrators with significant flexibility when configuring data protection policies in the StorageManager. Associating multiple agents with a single policy, for example all Oracle database agents, allows consistent data protection strategy to be applied across the enterprise.
MediaAgent

The CTE MediaAgent modules are responsible for managing the movement of data between physical storage devices and the CTE client agents. Each MediaAgent also maintains a low-level index of storage media contents. The MediaAgents software is storage media, operating system, and data movement function independent. This means that a Solaris MediaAgent can access magnetic disk, intelligent storage systems, automated tape libraries, tape stackers, standalone tape drives, bar-coded magneto-optical libraries, and non-barcoded, or blind, media. It can also read media created by a Windows MediaAgent, and it can perform backup and recovery, migration, and quick recovery. This flexibility allows the software to rapidly adapt to changes in storage technology and support a wide variety of storage architectures.

Figure 2. Supported Topologies

Backup and Recovery software components on a single server: Data movement tasks are performed by iDataAgents (iDAs) while flexible MediaAgents allow rapid adaptation to changes in storage technology and support a wide variety of storage architectures. For extremely large individual systems, the Backup and Recovery software architecture supports the ability to co-locate all modules on the same computer delivering high-performance, direct-attached throughput.

Figure 3. Centralized Management of Distributed Components

Backup and Recovery software architecture can deliver high-performance, direct-attached throughput for extremely large individual systems, by co-locating all modules on the same computer.
In environments where both centralized management and centralized storage are essential, such as storage for a single department or in raised-floor data centers, the Backup and Recovery software easily conforms to that data protection need.

Figure 4. Backup and Recovery Software Deployed in Local and Remote Configurations

Because data is transferred directly between MediaAgents and the iDAs, the need to move backup data across the LAN is eliminated and backup and recovery time is significantly reduced.

The product can be deployed with centralized control of distributed storage. Only control information is passed between the MediaAgent and StorageManager software, allowing slow communication links to be used. Data is transferred directly between MediaAgents and the iDAs, eliminating the need to move backup data across the LAN and significantly reducing backup and recovery time.

Figure 5. Backup and Recovery Software Components Deployed in a SAN

With complete media management capabilities and the ability to simultaneously monitor and manage devices attached via SAN, DAS, NAS, or LAN topologies, Backup and Recovery software enables every type of data movement to maximize your options.
The Backup and Recovery software also supports storage networking architectures like SAN or NAS. In SAN environments, LAN-free backup provides ServerFree and Serverless backup and recovery of data.

Backup and Recovery software supports LAN-free backups. With complete media management capabilities and the ability to simultaneously monitor and manage devices attached via SAN, DAS, NAS, or LAN topologies, Backup and Recovery software enables every type of data movement to maximize your options. The ability to perform backups from LAN-attached servers to SAN-attached devices fully leverages the SAN infrastructure to offload backup data from the primary LAN networks.

The Backup and Recovery software management framework is device and topology agnostic, which allows storage devices deployed in an iSCSI/IP-SAN environment to benefit from the full range of product features.

Intelligent Data Agents (iDA)

Backup and Recovery software includes iDAs to support a wide range of enterprise operating environments and applications.

Platform iDAs exist for:

- Microsoft Windows (NT 4, W2k, XP, W2k3)
- Microsoft Windows Storage Server 2003
- Sun Solaris (2.6 through 9)
- IBM® AIX® (4.3 and 5.x)
- HP-UX (10, 11, 11i)
- HP Tru64
- SGI
- MAC OSX
- Linux Red Hat (5.2, 6.2, 7.1, 7.2, 8 Advanced Server)
- SuSe Linux
- Novell Netware (4.1, 4.2, 5.0, and 6.x)
- NetApp, Celerra, IP/4700, and Blue Arc

Application iDAs include:

- Oracle (8i and 9i)
- SAP
- Microsoft SQL Server (7 and 2000)
- Microsoft Exchange (5.5, 2K, and 2K3)
- Microsoft Active Directory
- Lotus Domino (R4 and R5)
- IBM DB2
- Microsoft SharePoint Server
- IBM Informix 7.x
- Cluster support
Media Management

Drive and Library Management

Backup and Recovery software contains extensive capabilities to simplify the management of backup media resources. Backup data is written to a broad range of storage devices, including traditional tape and optical media, automated libraries for tape and optical media, and magnetic disk drives. Backing up data to disk is functionally equivalent to traditional tape-based methods, and the software extends the storage management features and functions of traditional tape to disk.

All major tape-, optical-, and disk-based storage media devices are supported as backup targets, and Backup and Recovery software performs all drive and library allocation and management. Storage policies allow administrators to perform one-time initial configuration of storage devices and then automatically leverage device in subsequent policies. This significantly reduces the time and effort spent managing and monitoring backups and backup media.

Disk-to-disk Backup

As disk prices continue to fall, lower-cost disk-based backup solutions offer another option in the storage hierarchy. New disk-to-disk (D2D) and disk-to-disk-to-tape (D2D2T) backup categories offer faster data access than tape at lower cost than primary disk storage. Although tape-based backups are still essential for long-term storage, disaster recovery, and offsite archival, disk-based backups offer a number of advantages.

When restoring data, the random access methods of a disk drive provide a significant speed boost over the sequential access methods of a tape drive. A disk drive allows individual files to be located and restored very quickly, eliminating the need to search sequentially through a tape to locate information during a restore. Disk drives further improve restore performance by eliminating tape mount delays. And, because disk drives are able to support concurrent access by multiple clients they can remove tape drive contention issues when running multiple backups or restores simultaneously. Disk-based backup and recovery processing also eliminates tape-handling failures, whether from human error or due to tape-library problems.

Backup and Recovery software leverages the random access nature of disk-based storage devices and takes advantage of native file systems and the two-part indexing scheme, to provide better performance than competing products that process disk sequentially, as if it were a tape. Optimized disk-based backup is especially important in scenarios where data delivery speeds cannot be guaranteed: for example, when backing up over a slow WAN link, when backing up many small files, or when using slow proprietary application programming interface (API) to feed data. Disk-based backup accommodates slow or intermittent traffic without the stop-go-position problem, known as shoe shining, that tape drives suffer from.

Backup and Recovery software integrates disk as a key layer in any data protection strategy. Storage policies incorporate disk for faster backup and restore and for near-term needs. Based on data retention and auxiliary copy needs, backup data on disk can be migrated to local or remote tape or disk later for vaulting, disaster recovery, or legal retention, freeing local disk storage for new backups.
Media-group Migration

Backup and Recovery software supports the migration of data between MediaAgents in the same CommCell, allowing data from UNIX or Windows optical, tape, or magnetic libraries to be freely interchanged. This is useful when a MediaAgent needs to be freed for data movement between libraries in different departments, to perform workload balancing when one drive pool undergoes an increased amount of activity, or if a library suffers a failure and the associated media must be accessed to perform a backup or recovery.

Data Aging

The data-aging process determines how many copies of a backup are kept based on a data retention indicator in each storage policy. The retention period indicates either a number of days or a specific number of full backup copies. Once the retention period is exceeded the data-aging routine deletes the old backup copies and reclaims the space.

An extended retention feature allows for fine-tuning of the data-aging process. Administrators can manually target a specific backup copy for longer retention or automate the process, for example specifying that the backup every Tuesday, or the third backup in a cycle, is to be retained for an extended time. This is useful when a specific copy of data needs to be kept around, for example, for audit purposes.

Auto-discovery Features

The Backup and Recovery software uses auto-discovery to locate all available storage devices. Discovered devices are made available to administrators during storage policy setup. This gives the administrator a clear picture of the environment and reduces the potential for configuration errors.

Intelligent Dynamic Drive Sharing (iDDS)

Figure 6. Library Sharing with CommVault Galaxy

![Diagram of library sharing with CommVault Galaxy](image)

iDDS improves backup performance and maximizes use of available tape drives and storage resources.
Intelligent Dynamic Drive Sharing (iDDS) allows policy-based sharing of tape-library resources across multiple backup systems, improving backup performance and maximizing the use of available tape drives and storage resources. By improving efficiency and speed, iDDS can help to provide a faster return on investment for networked storage resources. Unlike more elementary SCSI reserve and release strategies, iDDS uses a software layer to provide significantly enhanced reliability and manageability of complex networked storage environments.

Backup and Recovery software iDDS improves resource usage to complete jobs faster and with fewer errors. Drives in a drive pool can be dynamically re-allocated one-by-one to different jobs, instead of as an entire pool. The software also controls the reservation and allocation of tape-drive resources, eliminating the need to constantly ping the SAN infrastructure. And with superior error handling, Backup and Recovery eliminates the need to reset the SAN infrastructure in the case of a failure.

The Backup and Recovery software uses the concept of drive pools, a group of drives in a logical class. A drive pool can be a single drive out of a ten drives in a library, or all ten drives, or any number in between. A single physical drive may be part of multiple logical drive pools. The drive pools are used by storage policies to determine what resources each backup job can access. By definition, any client data set that shares the same storage policies will share the same drive pool. Magnetic disk volumes can also be shared in the same manner as tape drives. With the additional ability of multiple read and write heads on disk volumes, multiple backup and restore jobs can be simultaneously streamed to magnetic disk volumes.

In addition to the iDDS embedded drive allocation resource manager, Backup and Recovery software optionally allows SCSI reserve and release, using SCSI-3 protocol persistent reservations. This counters disadvantages in reserve and release processing in earlier versions of SCSI. Rather than resetting the target SCSI device when a host takes a hit, potentially requiring the SAN to be rebooted, SCSI-3 allows another host on the SAN that is part of the nexus to clear up the reservations using a unique reservation key. In addition, unlike prior versions of SCSI, SCSI-3 resets do not cause the reservations to be lost.

Microsoft RSM Support

Backup and Recovery software can be configured to use Microsoft Windows Removable Storage Manager (RSM) services, to share storage devices—libraries, drives and media changers—among multiple applications. Microsoft RSM can configure both tape and optical libraries, with or without barcode readers. This ability to take advantage of existing media-management capabilities provided by Microsoft allows customers to fully leverage the technology and expertise of multiple vendors from within Backup and Recovery software.

The Advanced Feature Pack (AFP)

The Backup and Recovery software Advanced Feature Pack (AFP) includes unique tools available as separately licensable features. The AFP tools provide data encryption, offsite vaulted media tracking, client migration, MediaAgent failover and load balancing, and data verification.

Data Encryption

The AFP Data Encryption tool allows data to be encrypted, over the wire and on the storage media, using a variety of code key encryption methods. The first method encrypts data only as it travels over the network. Once at the destination the data stream is decrypted and stored on the chosen media. The
second encryption method encrypts the data transported over the network and stores the encrypted information on media. The encryption key is stored in the CommServe StorageManager and is used when performing advanced Backup and Recovery software functionality, such as auxiliary copy or synthetic full backups. The data remains encrypted even after running advanced processing.

The final encryption method goes one step further and encrypts the encryption key with a user-defined pass-phrase before it is stored in the CommServe StorageManager. Although this method provides significantly enhanced security, most automatic copy processes, such as auxiliary copy, are not permitted unless the pass-phrase is entered at the time of execution. Two exceptions are provided to preserve advanced Backup and Recovery functionality. Firstly, a file with an encrypted key can be exported and used to restore data on the originating computer—and only on that computer—without being prompted for the pass-phrase. And, secondly, an exception can be explicitly stated to permit synthetic full backup processing to proceed without requiring the pass-phrase.

VaultTracker™

VaultTracker is a CTE extension for managing and tracking the movement of media to and from an offsite storage facility. VaultTracker tracking policies define the data to be moved, the movement schedule, and the destination for the data. Unlike competing offsite tracking products, Backup and Recovery software manages data, not the removable media. This allows VaultTracker to support advanced offsite media management concepts, such as virtual mail slots and multiple tape containers. VaultTracker supports library-to-location, location-to-location, location-to-library, and library-to-library media movement.

CommCell Migration

The AFP CommCell Migration tool allows clients and associated data to be migrated from one CommCell to another. Migration supports permanent movement of clients—for example, during consolidation, merger, or relocation of a client—and temporary migrations, when moving or relocating equipment. The migration process transfers client configuration details, IDA configurations, and data backup information, such as job history, media location, and storage policy information. Once completed, the client can be added to existing storage policies defined in the new CommCell.

GridStor™

Although the Backup and Recovery software iDDS feature improves resource usage and provides a measure of redundancy, it cannot eliminate backup and recovery failures caused by hardware, networks, or the storage media itself. GridStor addresses these problems, providing failover, load balancing, pooling, and provisioning support to improve Backup and Recovery software’s access and use of nearline and offline storage. GridStor operates across operating system environments and storage media type. So, for example, a Windows file system backup job can failover from a Windows MediaAgent to a Solaris MediaAgent, and the failover is completely transparent to restore processing.

Gridstor provides alternate paths to enable access to specific storage, even if the MediaAgent that wrote the data is unavailable. During backups, the original or substitute nearline or offline resource may be used. The priority for selecting resources is configured by the user. Once done, the hierarchy of resource use is automatic and transparent. Gridstor optimizes resource use and enables load balancing, redirecting jobs to access underutilized storage resources.
Data Verification

When data is backed up to a storage device there is no way to make sure that the data is truly restorable, short of immediately performing a restore. Since restoring every backup to ensure its validity is unfeasible, other means of verification are necessary. Tape devices have built-in cyclical redundancy checks (CRC) to ensure that data is written correctly. However, this does not ensure that the data written is restorable. The Backup and Recovery software AFP Data Verification tool verifies that backups can be restored.

The Data Verification tool can be configured to run after all backups, all full backups, or backups occurring on or after a certain date. Using the Data Verification tool provides peace of mind, with the knowledge that, in the event of a disaster, data is truly restorable.

Data Movement

DataPipe™

The Backup and Recovery software DataPipe™ technology is designed to move data as fast as the source client can provide it, the data transport layer can pass it, and the backup media device can write it. The same process is used for writing backups to direct-attached SCSI devices as is used for network TCP/IP connections. With patented double buffering and shared memory transfer, DataPipe technology provides high-performance data movement with extremely low overhead. In performance testing over TCP/IP networks, the software has produced data transfer rates close to the theoretical limits of the network—minus protocol overhead. The technical construction of the DataPipe technology allows it to work equally well transferring data between identical media—such as from tape to tape—and disparate media—such as from disk to tape or from optical to tape.

Backup and Recovery software storage policies allow the administrator to specify the amount of network bandwidth a backup consumes. The feature allows backup bandwidth use to be fine-tuned to appropriate levels.

Multiplexing

Storage policies support selective configuration of multiplexing to simultaneously stream multiple backup jobs to the same tape drive. Multiplexing is an effective means of keeping a tape drive operating efficiently when data is being transferred over slow networks. By interleaving the backups from multiple jobs, the tape drive receives sufficient input to write a continuous stream of data to tape (see Figure 7). Streaming optimizes tape-drive performance and efficiency and reduces the wear and tear created by excessive stop-start processing of a slow input stream.
Multiplexing is an effective means of keeping a tape drive operating efficiently when data is being transferred over slow networks.

Although high-bandwidth networks and disk-to-disk backup have reduced the need for multiplexing, the technology is still viable due to continuous improvements in tape-drive write speed. However, latency associated with restoring data from a multiplexed tape has always been a problem. The cost of demultiplexing the data on tape in order to restore a specific backup often results in slow restores.

Backup and Recovery software’s advanced indexing capabilities eliminate the restore penalty of multiplexed backups, allowing the fast restore of individual files or entire volumes and directories. With index information providing the exact location of each block of a file on the backup data stream, Backup and Recovery software is able to restore a file after a single, one-directional pass through the tape, without rewinding. The ability to efficiently demultiplex backup data streams on-the-fly allows auxiliary copy and synthetic full backup functionality to be used with multiplexed tape.

Serverless Data Manager (SDM)

The Backup and Recovery software serverless data manager (SDM) module allows backup jobs to take advantage of serverless data movement capabilities of SAN storage routers. Using the SCSI extended copy command set, a point-in-time image of application data, generated using supported third-party storage system snapshot functionality, is transferred directly to a backup storage device, bypassing the application server. This frees CPU cycles on the application server.

Snapshot-assisted Backup

Snapshot-assisted backup functionality automates the otherwise manual task of protecting application data using a third-party storage system snapshot feature as a source of the backup. Backup and Recovery software’s built-in awareness of Solaris, AIX, Windows, Exchange, SQL, and Oracle applications enables the process of quiescing the application, performing the snapshot, restarting the application, backing up the snapshot, and then deleting or re-syncing the snapshot volume to be fully automated and scheduled.

Hitachi ShadowImage™ In-System Replication software and Hitachi TrueCopy™ Remote Replication software are fully supported by snapshot-assisted backup. The Backup and Recovery software backs up snap volumes (SVOL) directly to tape, eliminating the performance overhead of an online backup on the application server. Data-path mapping between a production server and the backup host is handled transparently by the iDA software.
Backup and Recovery software supports moving data to a target backup device from the snapshot volume using either the Serverless DataManager (SDM) module or a backup server hosting a MediaAgent. If a MediaAgent is used, the snapshot volume must be mounted to the backup server. After backing up the data the snapshot is either deleted or resynchronized.

The Backup and Recovery software snapshot-assisted backup feature also supports CommVault Software Snapshot (CSS), EMC TimeFinder and SnapView, HP EVM and EVA, and Microsoft VSS.

Image-level Backup

Image-level Backup uses snapshot technology to create a near instantaneous image of the data being backed up, with little impact to the application. Although the image-level iDA performs a block-based volume-level backup, reducing the backup window by an order of magnitude, Backup and Recovery software is able to offer file- and folder-level restore granularity due to the advanced indexing capabilities of the product. Backup and Recovery software also supports block-level incremental backups, to capture changed data blocks and subsequently update the primary backup copy. Image-level technology is especially useful when backing up large file systems with millions of files, when backing up environments with low tolerance for backup disruption and less demand for fast restores, and in situations where full volume restore is more likely than individual file restores.

Indexing

The Backup and Recovery software uses a two-part synchronized indexing scheme, consisting of a centralized metadatabase catalog, residing within the CommServe StorageManager, and an index co-located with the MediaAgent software. This approach provides efficient scalability to accommodate data growth, support redeployment of storage resources, and increase reliability of the entire system.

A permanent copy of the index is stored on the backup media. The Backup and Recovery software also maintains an active copy of the index on the client computer disk, where the MediaAgent is installed. As new data is written to media, new indices are created. Configurable parameters let administrators set the size of the disk cache and duration of the local index. If the index exceeds the pre-configured capacity, older indices are overwritten using a least recently used algorithm.

Index data efficiently gathers information regarding the location of files for recovery processing, and enables rapid browsing of backed up data. Requests for information found in the indices are satisfied from the cached copy of the index. If the index is no longer on disk, the permanent index on the backup media is accessed.

Logical Data Management

Job Scheduler

Backup and Recovery software supports the flexible scheduling of all product operational functions, including: backup jobs, comprising express-recovery backup, auxiliary-copy, and synthetic full-backup jobs, as well as restores, administrative jobs, data aging processes, reports, media exports, VaultTracker jobs, and data verification jobs. The highly customizable scheduler can accommodate a wide variety of scheduling recurrences, and scheduling policies allow templates to be created and applied across a group of objects, such as subclients.
Each job has a date and time and allows for the specification of the time zone to use for the time specified. This last feature is important in the case of remote administration, where the administrator could be scheduling jobs using the Backup and Recovery software console via the Internet and might not be in the same time zone or even the same country. The comprehensive nature of the scheduler and its extensive policy capabilities enable the creation of a set of sophisticated, lights-out procedures, significantly reducing management complexity and expense.

Storage Policies

Storage policies are a fundamental element of the Backup and Recovery software’s logical view of storage resources. Policies define all key operational parameters, including where data is stored, how long it is retained, the number of copies to create, the location of the copies, the retention of the copies, and when to make the additional copies. Data is assigned to a storage policy and then managed according to the specified guidelines. Moving data between policies is simple. It does not require hardware reconfiguration, re-cabling, or re-networking to accomplish a change in the way the data is managed. This reduces the cost and complexity of setting up and maintaining the data protection infrastructure.

Backup and Recovery software provides default storage policies for each media library, standalone tape drive, and magnetic disk drive. Default policies ensure all visible data is protected from the moment the product is installed. As subsequent storage policies are defined and data is reassigned it is removed from the default policy.

Auxiliary Copy

Backup and Recovery software auxiliary copy feature creates one, or more, secondary copies of the primary backup data, independent of the original copy. Secondary copies can be of different media type. For example, if the primary copy is made to a magnetic disk library, local to the application, auxiliary copies can be made to a local tape in a tape library and to a remote tape in an offsite disaster recovery site. Multiple auxiliary copy types are supported, including: full auxiliary copy, which duplicates an entire tape set (full and all incremental backups); selective auxiliary copy, which duplicates only the most recent full backup; and, job-based auxiliary copy, which allows for specific jobs within a storage policy to be designated for auxiliary copy, independent of the remaining jobs in the storage policy.

Auxiliary copies enable hierarchical storage management (HSM) processes to be implemented. Each storage policy contains information about the number of auxiliary copies to make and their retention periods. If multiple auxiliary copies are initially made, each with different retention periods, the data on more expensive media can be expired as it ages, freeing up the space for other copies of data to be stored. This eliminates the need to manually migrate data from one storage device to another, and provides for long-term retention of data while optimizing storage space and costs.

Synthetic Full Copies

The synthetic full-backup process creates a new full-backup image by combining the last full-backup image and the latest incremental backups. This method of creating a new full-backup image dramatically reduces the I/O load on the client machine, as only incremental backups are needed after the initial full backup is executed. Synthetic full backups also provide a way to create a new full image of the client machine using an offline process, and improve full server restores.
Ease of Use

Web-accessible, Single Management Console

Backup and Recovery software provides a single, Web-accessible console for managing data protection for Windows, UNIX, Netware, and Linux systems. This eliminates administrator frustration at having to navigate many different interfaces, and reduces staff training costs.

The browser-based GUI allows administrators to log into the CommServe from any network-attached machine. Flexible security permissions can restrict user access to only pertinent functions, allowing a single unified interface to be deployed with common policies for applications on Windows, UNIX, Netware, and Linux.

Push and Silent Installation, and the CommCell Update Service

The Backup and Recovery software supports push installation allowing installs and upgrades to be accomplished without user intervention, and with minimal or no impact to receiving systems. Push installation allows appliances and headless devices at remote sites to be effectively managed from a central location. In addition, the product offers silent installs through the use of answer files for remote and network push installation.

The Backup and Recovery software includes a CommCell Update Service that automatically checks a support FTP site for patches and updates to the software. Any new patches are automatically downloaded to a cache directory on the CommServe platform, and administrators are notified that updates are ready to be applied. When the administrator is ready to apply the new patches, the CommCell Update Service automatically updates the CommServe, Media Agents, and iDAs and logs the activity in the Event Viewer.

Event Viewer and Job Controller

The Backup and Recovery software Event Viewer and Job Controller provide administrators with real-time management and monitoring of the data protection environment. The Job Controller’s single window interface allows all data protection jobs to be managed. Job run information is updated in real time and control functions can be issued to stop, pause, restart, or kill running jobs.

The Event Viewer allows administrators to monitor all events and data protection activity. Customizable user preferences allow event messages to be subset to ease viewing, and a search tool supports querying by time period, event severity, or job identifier. The Job Controller and Event Viewer allow multiple windows to be open simultaneously, and event reports can be generated with user-modified names.

Reporting and the CommCell Explorer

Backup and Recovery software offers a sophisticated suite of reports allowing administrators to assess, plan, and monitor activities across the installation. Reports include: backup history, data aging history, auxiliary copy history, job history, library and drive, media in library, restore history, and storage policy. The CommCell Explorer tool allows custom reports to be generated and enables report data to be exported for processing by third-party tools, such as Crystal reports.
Command Line Script Generator

The Backup and Recovery software supports the scripting of backups, auxiliary copies, ExpressRecovery backup, and data aging processes. A utility is provided to capture user-interface actions as a command-line-executable script. Administrators do not need to know a scripting language or API syntax to capture the scripted actions. Once the script is recorded it can be executed to mimic actions at the console. This is useful for pre- and post-processing activities, where the end of a process needs to trigger another activity. Scripting allows these actions to be performed unattended, for example, at a disaster recovery site.

Reliability

CommServe ExpressRecovery

The ExpressRecovery utility backs up the Backup and Recovery software CommServe StorageManager meta-database and corresponding Windows Registry data. In the event of a failure the meta-database and registry can be restored, either locally or at a disaster recovery site, using the CommServe Recovery Tool.

Like regular data backups, the ExpressRecovery utility leverages the CTE, and supports scheduling and event and job administration tools. Any media accessible to the CommServe server can host the ExpressRecovery backup data.

Clustered System Support

All modules in the Backup and Recovery software solution—CommServe StorageManager, MediaAgent, and iDAs—leverage the same failover protection afforded to virtual servers within the clustering environment. If an active node fails, every Backup and Recovery software module is able to function from the node that has not failed—via automatic failover to the active node. Regardless of the hosting node, the software is able to perform both backup and recovery operations for virtual servers as long as it has access to the network and the network names and IP addresses of the virtual servers. Backup and Recovery software is designed to treat clustering as a truly virtual environment, and it easily adapts to Microsoft Cluster Server (MSCS), Sun Clusters, HP ServiceGuard, and Oracle FailSafe, among others. Multiple instances of Backup and Recovery software can be installed and run in multiple virtual nodes. This allows administrators to load balance clustered backup activities, as well as set up failover scenarios using different MediaAgents, Storage Policies, and storage resources.

Restart, Operational Windows, and Job Priority

Backup jobs can be interrupted because a network, disk, tape, or server fails during execution, or because the job runs longer than it is intended and must be cancelled. Backup and Recovery software allows certain jobs to be automatically resumed when they are interrupted. And for jobs that cannot be resumed—such as database backups—the software can automatically restart the job from the beginning after a failure.
Backup jobs that support being resumed after an interruption include: Windows, UNIX, and Linux file system backups, Exchange mailbox backup, Lotus Notes and Domino document backups, image and ProxyHost backups, and auxiliary copy, selective auxiliary copy, and synthetic full backup jobs. In addition, for Network Appliance storage systems using Data ONTAP release 6.4 or greater, Backup and Recovery software supports resuming both NDMP backups and auxiliary copies of NDMP backups.

Figure 8. Operational Window Setting

Administrators can define a specific time during which a backup or copy job cannot execute using the operational window feature.

Backup and Recovery software provides an operational window feature that allows administrators to define a specific time during which a backup or copy job cannot execute. This feature helps prevent unexpectedly time-consuming jobs from disrupting business operations. If a job is submitted outside of its permitted operational window, it is held in a pending state until the window opens again. Jobs started in the operational window that do not complete are suspended and resumed—if possible—during the next operational window. If the job cannot be resumed from point of failure, Backup and Recovery software finishes or cancels the job depending on administrator settings.

Job priorities determine which jobs are run, and in what order. By default, restores are given highest priority and operational jobs, such as auxiliary copy, are given lowest priority. Priorities ensure that critical jobs get access to the resources they need to ensure they are completed within the operational window. Each job is assigned a priority number, and the combination of client computer and job priority determines execution order. Priorities are defined by the administrator and are configured and changed from the main console. Dynamic job prioritization allows the administrator to change the priority of an executing, initiated, or scheduled job, on the fly. This flexibility allows the administrator to take immediate action on a job-by-job basis without affecting the job schedules and priority settings previously defined for normal operations.

NAS Backup and Restore with NDMP

Backup and Recovery software provides data protection for multiterabyte NAS filers using NDMP (Network Data Management Protocol) to control the backup and recovery process. Direct-attached backup, three-way backup, and library sharing between filers is supported.
NDMP features include: Direct Access Recovery (DAR) to speed individual file and directory restores; restartable NDMP backups and auxiliary copies of Network Appliance Filers running Data ONTAP 6.4 or greater; recovery of NDMP backups to a Windows system instead of a filer; library sharing between many filers and server-based storage for optimum use and faster ROI on automated tape libraries; remote NDMP tape server, allowing a Windows MediaAgent to write an NDMP backup to direct attached tape, eliminating the need for locally attached devices on every filer; high-performance local backup of NAS filers to remove backup traffic from the LAN; three-way backup of filers, to eliminate the need for a locally attached tape drive on every filer; single file, volume, or directory recovery to the same or alternative filer, including wild-card search capabilities; and, a single unified user interface to manage server-based and NAS storage with all-inclusive storage policies.

Backup and Recovery software supports filer backups to devices located on the SAN, such as the Network Appliance TapeSAN initiative, and the backup of filers as a network share, allowing devices like the Network Appliance NearStore to function as backup consolidation device for all types of backups, not just filer backups.

Backup and Recovery Software: An Application-centric Approach

Backup and Recovery software approaches data protection from an application perspective. How the data is protected is a direct function of how the users may need to restore the data in the event of data loss. This stance allows customers to adopt a data-centric approach to data protection rather than one that is based on limitations of the available storage or backup application.

As part of this approach, Backup and Recovery software from Hitachi Data Systems employs iDAs for both operating-system platforms and mission-critical applications. Focusing on the application allows Backup and Recovery software to create agents that use specific application APIs, enable levels of data granularity, and offer each data type a unique management strategy that is key to meeting data protection needs. Performing complete database, application, and file system backups is critical for disaster recovery, but in most cases, data loss is not catastrophic, but rather individual. The administrator needs to only recover a specific portion of data, not an entire database. Backup and Recovery software has agents for both full database backups and granular backups for applications that can expose the data at a more granular level.