Hitachi Accelerated Flash
An Innovative Approach to Solid-State Storage
By Hitachi Data Systems
November 2015
Contents

Executive Summary .. 2

Introduction .. 3

 - Flash Design Tradeoffs for Real-Enterprise Workloads... 3

Hitachi Accelerated Flash ... 9

 - The Rise of Hitachi Accelerated Flash... 9
 - Hitachi Accelerated Flash Evolution.. 12
 - Key Building Blocks of Hitachi Accelerated Flash.. 12
 - How HAF Innovation Extends the Endurance of MLC Flash System.. 15

Architecture Highlights .. 16

 - Embedded Flash Controller ASIC .. 16
 - Flash Controller Feature Highlights.. 18
 - Flash Module Drive DC2 Feature Highlights ... 24

Conclusion ... 27

Appendix: External References .. 28
Executive Summary

Until the advent of solid-state storage that was ready for the data center, the performance gap between storage systems and application-server CPUs created troublesome productivity bottlenecks in the data center. Storage architects tried to squeeze performance from data stores in ways that were both inefficient and expensive. But as performance was key in the world of data-intensive applications, cost had to remain a secondary concern.

Flash technology has become more common in the data center over the past few years. However, high costs, limited bandwidth, controller bottlenecks due to increasing loads, and sporadic response time increases have hampered its full adoption. It is challenged by real-enterprise workloads, including software as a service, large-scale transaction processing, online transaction processing (OLTP) databases and online analytical processes. These applications can tax data center capabilities and have an average I/O profile that often exceeds 64KB block size with a large share of random write and sequential read/write requests. These workloads can underperform on flash offerings that are optimized for small 4K block I/Os, which are not designed to handle larger I/Os. IT organizations have been forced to make tradeoffs in performance and efficiency to reach the cost points that their shrinking budgets can accommodate.

Hitachi Storage Virtualization Operating System (SVOS) integrated with Hitachi Accelerated Flash (HAF) fundamentally changes this paradigm. HAF is powered with flash optimizations to SVOS and unique solid-state hardware design, which eliminate these tradeoffs and answer demands for high performance, predictable, submillisecond response time at a lower effective cost.

With more than 350 flash patents, Hitachi SVOS optimizations are engineered to accelerate the I/O path for access to flash devices. The result is a complete “flash-accelerated” refresh of the operating system that delivers significantly improved I/O processing, higher multithreading support and faster internal data movement. It also reduces response times considerably.

The second-generation flash module drive (FMD DC2) on Hitachi Virtual Storage Platform (VSP) is built from the ground up to support concurrent, large I/O enterprise workloads and enable hyperscale efficiencies. At its core is an advanced embedded multicore flash controller that increases the performance of multilayer cell (MLC) flash to levels that exceed levels of more costly single-level cell (SLC) flash solid-state drives (SSDs).

Although FMDs use MLC flash, they are not SSDs. The FMD is larger and longer than a traditional 2.5- or 3.5-inch SSD; its rackmount design better utilizes the full depth of typical 19-inch data center rack. It enables leading, real-application performance, with 150K 8KB random read I/O, with up three times the random read and five times the random write performance of SSDs. It delivers a lower effective cost, with up to 70% lower effective bit price as well as up to 60% faster response times.1 Running on Hitachi VSP family systems, HAF enables submillisecond delivery on a petabyte scale.

The purpose of this white paper is to take a close look at Hitachi Accelerated Flash. The discussion focuses on the uniqueness of this solution. It considers why and how HAF can meet the increasing IT challenges of large and small enterprises as they focus on the management challenges of their high-velocity data.

1 Based on 1.6TB SSD OEM price and 2:1 typical compression ratio.
Introduction

Flash Design Tradeoffs for Real-Enterprise Workloads

For storage architects and engineers designing high-performance application environments, flash can deliver significant performance, response time and environmental benefits. However, these must be balanced against cost and potential performance reductions that can occur when technologies like deduplication and compression are enabled. When considering performance, four criteria (see Figure 1) define the performance envelope of a flash drive: interconnect to the host, the embedded flash controller performance, the NAND package (chip) array, and power. The flash translation layer or FTL aggregates all these resources to enable a singular block of addresses that span across many NAND packages.

Workload I/O profiles that are random-read intensive will taxes the most the embedded flash controller and interconnect, requiring an efficient flash translation layer (FTL) to handle concurrent commands. Write intensive random I/O scaling will be limited by the NAND array, available power (operating temperature) to drive as many channels and NAND package in parallel. Write scalability limits and response times will be defined by the amount of memory and bandwidth available to the FTL to process requests related to NAND cell mapping.

The following sections will break down core flash components and concepts to raise the prospective buyer understanding and help them assess flash quality and price difference. While all vendors promote lower the price over time, lower cost flash is not always better based on workload.

Using recent 20nm Micron flash memory as an example (see Table 1), we present the specifications for a multilevel cell.
Table 1. Operational Attributes Micron 512Gb MLC Flash Memory

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV-DDR I/O Performance (ONFI 2.x)</td>
<td>200MT/s (100MB/sec duplex)</td>
</tr>
<tr>
<td>Die Size</td>
<td>144Mb</td>
</tr>
<tr>
<td>Dies per Package</td>
<td>4</td>
</tr>
<tr>
<td>Planes per Die</td>
<td>2</td>
</tr>
<tr>
<td>Block Size</td>
<td>8800KB</td>
</tr>
<tr>
<td>Page Size</td>
<td>16KB + 1216 bytes</td>
</tr>
<tr>
<td>Data Register</td>
<td>32KB</td>
</tr>
<tr>
<td>Page Read to Register</td>
<td>115μs</td>
</tr>
<tr>
<td>Page Program (Write) From Register</td>
<td>1600μs</td>
</tr>
<tr>
<td>Block Erase</td>
<td>3ms</td>
</tr>
<tr>
<td>Serial Access to Register (Data Bus)</td>
<td>180μs</td>
</tr>
<tr>
<td>Program or Erase Cycles</td>
<td>3000</td>
</tr>
</tbody>
</table>

MT = mega transfers per second

Figure 2 shows a schematic for a flash package. A flash package is composed from one or more dies. We describe a 512Gb flash package, consisting of four 128Gb dies, and sharing an eight-bit serial I/O bus and a number of common control signals. The four dies have separate chip enable and ready or busy signals. Thus, one of the dies can accept commands and data while the other is carrying out another operation. The package also supports interleaved operations between the four dies. Each die within a package contains 2,096 blocks, organized between two planes of 1,048 blocks. The dies can operate independently, each performing operations involving one or two planes. Each block in turn consists of 512 pages, 16KB each page. In addition to data, each page includes a 1,216 bytes region to store metadata (identification and error detection information).
Data reads are at the granularity of flash pages, and a typical read operation takes 115μs to read a page from the media into a 32KB data register, and then, subsequently, shift it out over the data bus. The serial line transfers data at 10ns per byte, or roughly 180μs per page. Flash media blocks must be erased before they can be reused for new data. An erase operation takes 3ms, which is considerably more expensive than a read or write operation. In addition, each block can be erased only a finite number of times before becoming unusable. This limit, 3K erase cycles for current generation flash, places a premium on careful block reuse. Writing (or programming) is also done at page granularity by shifting data into the data register (90μs) and then writing it out to the flash cell (1600μs). Pages must be written out sequentially within a block, from low to high addresses. The part also provides a specialized “copyback” program operation from one page to another, improving performance by avoiding the need to transport data through the serial line to an external buffer.

These NAND devices use electrical and command interfaces. Data, commands, and addresses are multiplexed onto the same pins and received by I/O control circuits (see Figure 3). The commands received at the I/O control circuits are latched by a command register and are transferred to control logic circuits for generating internal signals to control device operations. The addresses are latched by an address register and sent to a row decoder or a column decoder to select a row address or a column address, respectively. The data are transferred to or from the NAND flash memory array, byte by byte (x8), through a data register and a cache register. The cache register is closest to I/O control circuits and acts as a data buffer for the I/O data, whereas the data register is closest to the memory array and acts as a data buffer for the NAND flash memory array operation. The NAND flash memory array is programmed and read in page-based operations and is erased in block-based operations. During normal page operations, the data and cache registers are tied together and act as a single register. During cache operations, the data and cache registers operate independently to increase data throughput.
All NAND-based SSDs are built from an array of NAND flash package and die (see Figure 4); each drive must have a host interface logic to support a physical connection and a logical disk emulation such as a flash translation layer function to enable an SSD to mimic a hard disk drive behavior and response. The bandwidth of the host interconnect is often a critical constraint on the performance of the device as a whole, and it must be matched to the performance available to and from the flash array. An internal buffer manager holds pending and satisfied requests along the primary data path and queues. A multiplexer (flash demux/mux) emits commands and handles transport of data along the channels (serial connection) to the NAND flash packages and dies. The multiplexer can include additional logic, for example, to buffer commands and data. A processing engine is also required to manage the request flow and mappings from disk logical block address to physical flash location. The processor, buffer manager and multiplexer are typically implemented in a discrete component such as an ASIC or FPGA, and data flow between these logic elements is very fast. The processor, and its associated standalone RAM support caching of multiple concurrent host I/O.
The serial interface over which flash packages receive commands and transmit data is a primary bottleneck for SSD performance. The Micron part takes roughly 180μs to transfer a 16KB page from the on-chip register to an off-chip controller plus another 90μs required to move data into the register from the NAND cells. When these two operations are taken in series, a flash package can only produce 3,700 page reads per second (62MB/sec). If interleaving is employed within a package, the maximum read bandwidth from a single part improves to 5,960 reads per second (100MB/sec). Writes, on the other hand, require the same 180μs serial transfer time per page as reads, but 1,600μs programming time. Without interleaving, this gives a maximum, single-part write rate of 562 pages per second (9.4MB/sec). Interleaving the serial transfer time and the program operation quadruple the overall bandwidth. In theory, because there are four independent dies on the packages we are considering, we can interleave five operations on the four dies put together. This would allow both writes and reads to progress at the speed of the serial interconnect.

Interleaving can add considerable speed when the operation latency is greater than the serial access latency. For example, a costly erase command can in some cases proceed in parallel with other commands. As another example, fully interleaved page copying between two NAND packages can proceed at close to 360μs per page as depicted in Figure 5 in spite of the 1600μs cost of a single write operation. Here, four source planes and four destination planes copy pages at speed without performing simultaneous operations on the same plane-pair and while optimally making use of the serial bus pins connected to both flash dies.
Once the pipe is loaded, a write completes every interval (360μs). Even when flash architectures support interleaving, they do so with serious constraints. So, for example, operations on the same flash plane cannot be interleaved. This suggests that same-package interleaving is best employed for a choreographed set of related operations, such as a multipage read or write as depicted in Figure 5. The Micron parts we examined support a fast internal copyback operation that allows data to be copied to another block on-chip without crossing the serial pins. This optimization comes at a cost: The data can only be copied within the same flash plane (of 1,048 blocks). Two such copies may themselves be interleaved on different planes, and the result yields similar performance to the fully interleaved interpackage copying depicted in Figure 5, but without monopolizing the serial pins.

The nature of NAND flash dictates that writes cannot be performed in place as on a rotating disk. Moreover, to achieve acceptable performance, writes must be performed sequentially whenever possible, as in a log. Since each write of a single logical-disk block address (LBA) corresponds to a write of a different flash page, even the simplest SSD must maintain some form of mapping between logical block address and physical flash location. A portion of the logical block map is usual cache in volatile memory with the full mapping table stored in the NAND flash so that it can be reconstructed at startup time.

The following systems issues are relevant to NAND-flash performance:

- **Data placement.** Location of data across the chips is critical not only to provide load balancing, but also to affect wear leveling.

- **Parallelism.** The bandwidth and operation rate of any given flash chip is not sufficient to achieve optimal performance. Hence, memory components must be coordinated to operate in parallel.

- **Write ordering.** The properties of NAND flash present hard problems to the flash storage designer. Small, randomly ordered writes are especially tricky. In particular, random write performance and disk lifetime will vary significantly due to the locality of disk write operations.

- **Workload management.** Performance is highly workload-dependent. Design decisions that produce good performance under sequential workloads may not benefit workloads that are not sequential. Or small block (4KB) I/O design may
deliver high performance for a PC or client workload but suffer for large-block I/O (64KB), such as database and vice versa.

Moreover, to achieve acceptable performance, writes must be performed sequentially whenever possible, as in a log. Since each write of a single logical-disk block address (LBA) corresponds to a write of a different flash page, even the simplest SSD must maintain some form of mapping between logical block address and physical flash location. The logical block map is usually held in volatile memory and reconstructed from tables saved on flash at startup time.

When handling a write request, each target logical page (16KB) is allocated from a predetermined array of flash memory. The allocation pool might be as small as a flash plane or as large as multiple flash packages. When considering the allocation, the following variables will influence the FTL optimization:

- Static map. A portion of each LBA constitutes a fixed mapping to a specific allocation pool.
- Dynamic map. The nonstatic portion of a LBA is the lookup key for a mapping within a pool.
- Logical page size. The size for the referent of a mapping entry might be as large as a flash block (8800KB), or as small as an eighth of a page (2KB).
- Page span. A logical page might span related pages on different flash packages, thus creating the potential for accessing sections of the page in parallel.

These variables are then bound by three constraints:

- Load balancing. Optimally, I/O operations should be evenly balanced between allocation pools.
- Parallel access. The assignment of LBAs to physical addresses should interfere as little as possible with the ability to access those LBAs in parallel. So, for example, if LBA zero to LBA n are always accessed at the same time, they should not be stored on a component that requires each to be accessed in series.
- Block erasure. Flash pages cannot be re-written without first being erased. Only fixed-size blocks of contiguous pages can be erased.

Hitachi Accelerated Flash

The Rise of Hitachi Accelerated Flash

We find that many of the issues that arise in NAND-flash solid storage design appear to mimic problems that have previously appeared higher in the storage stack.

Hitachi’s NAND storage is designed with enterprise workload in mind. Its improvements are specifically designed to address intensive large-block random write I/O and stream of sequential write requests from applications, such as software as a service, large-scale transaction processing, online transaction processing (OLTP) databases, and online analytical processes. Our implementation leverages the architecture efficiency from our high-end Hitachi VSP architecture, known for its scalability records. No surprise, the FMD DC2 FTL is built on an SVOS lite kernel that manages all host I/Os, NAND functions and metadata. Its active metadata is stored in shared onboard RAM with a journaled copy on NAND flash and 8GB of dedicated external DRAM used for I/O caching; this is more than three times the DRAM capacity as off-the-shelf enterprise SSDs. Since overall write I/O performance is limited by the back-end flash array, NAND package scaling on FMD DC2 (see Figure 6) was increased by 16 times and number of channels by eight times compared to SSDs.
Accelerate More Workloads

- Limit of a NAND chips
 - Up to 16x more NAND
- Number of channels or more die per channel
 - Up to 8x more channels
- Embedded Flash Controller
 - Multicore assist
 - Workload priority management
 - Lightweight garbage collection

There is no argument that flash can deliver performance when needed. Companies in the Hitachi customer base have been quick to appreciate the benefits that highly accessible data can deliver. With more than 250PB of HAF sold as of CQ3 of 2015 since its inception (November 2012), industry leaders have selected HAF over commodity off-the-shelf SSD. They choose HAF for workloads that impact their bottom line, affect their reputation and are imperative when peoples’ lives are at risk. They also appreciate the economic benefits that come with this new tier of storage.

Is performance the only reason why Hitachi sold more physical capacity than any of our competitors? While Hitachi customers will often describe the core value of Hitachi Virtual Storage Platform family and HAF as the trusted IT, cost advantages from Hitachi SVOS efficiency, scaling and lower effective bit price of FMDs are also defining factors.

While FMD DC2 performance is tied to the size of the NAND array, the same is true when comparing cost benefits. How can it be? Do SSD shipments fueled by the consumer market give SSD vendors a cost advantage over FMDs? Yes and no.

Yes, leading sales unit volume does provide a cost advantage and purchasing power with NAND suppliers, but the SSD standard form factor limits the real estate for NAND capacity and adds up to 50% packaging tax. Figure 7 illustrates the packaging tax buried in a SSD cost.
For up to 8 NAND package, an SSD requires an embedded ASIC flash controller, serial-attached SCSI (SAS) host bus adapter (HBA), double-data rate (DDR) random access memory (RAM), capacitor, printed circuit board, cases, connectors. For low capacity SSD, the sum of all these extra components can be as much as the cost of the NAND itself. While the FMD form factor does not change the requirement for all the extra components to enable flash storage, it does amortize the packaging overhead cost over eight times more NAND. It changes the overhead versus NAND cost ratio and enables Hitachi to pass on the bit price cost savings to our customer. At the release of the FMD DC2, the bit price savings over off-shelf SSD can be as much as 70% lower using a 1.6TB SSD street price as baseline.

The FMD form factor provides another advantage over SSD, it supports much higher power needed to drive the larger NAND array. Typical SSD are rated around 7 Watts per drive, while FMD handle up to 25 Watts. The FMD longer form factor enables a standard air-cooled rackmount tray to keep the drive operating with five times the random write performance.

Hitachi has designed a purpose-built flash solution for enterprise workloads. HAF is integrated with the VSP family’s Storage Virtualization Operating System, which was engineered to accelerate the I/O path for access to flash devices. The result is a complete “flash-accelerated” refresh of the operating system with improved I/O processing, higher multithreading support and faster internal data movement. It also reduces response times considerably by as much as 65%. These changes combine to triple system performance from the operating system alone.

It also includes Hitachi designed flash module drives (FMD DC2). These components are available options for flexible VSP G series and are the storage backend for the all flash VSP F series.
Hitachi Accelerated Flash Evolution

The Hitachi approach to flash has been to integrate the best available flash technology into the storage portfolio. SSD in drive form factors is supported, but Hitachi also recognized an opportunity to deliver advanced performance, resiliency and offload capabilities beyond what SSD has by developing their own flash technology.

This strategy was articulated by industry analyst George Crump, who stated in one of his blogs: “When a flash system vendor develops their own controller technology it also gives them the freedom to advance their controller functionality so it can provide enterprise-class reliability to lower-cost MLC flash.”

With HAF, Hitachi set out to design a purpose-built, enterprise-class flash controller that would tightly and transparently integrate with the current Hitachi storage portfolio. The result is a flash-focused controller that synergistically operates with traditional Hitachi storage controllers and exploits the rich portfolio of Hitachi storage innovations. This unique flash controller introduces a significant number of flash-focused innovations that optimize the use of MLC NAND flash as an enterprise-class storage system. The 350-plus flash storage patents granted are a testament to the advanced innovation accessible in this controller and Hitachi flash leadership (see Figure 8).

Figure 8. Hitachi Flash Patent Portfolio Comparison

Key Building Blocks of Hitachi Accelerated Flash

- Flash module unit (2U chassis that can support up to 12 flash module drives) (see Figure 9).
- Flash module drive (see Figure 10).
 - Flash controller ASIC (part of the FMD).
 - MLC NAND flash (part of the FMD).
- Flash acceleration software, included with Hitachi Storage Virtualization Operating System.

The Flash Module Tray

This chassis consists of a basic 2U enclosure that can be easily integrated into a Hitachi VSP family system (all models). The flash module unit chassis is designed specifically to accommodate 12 FMDs, which are the hot-pluggable unit of capacity. The storage can be configured for either hybrid-flash or all-flash deployments.

Figure 9. Flash Module Tray

![Flash Module Tray](image)

The Flash Module Drive

The FMD is the standard enterprise storage module for HAF. It integrates the flash controller custom ASIC, 25nm MLC NAND flash memory, DDR3 and 6 Gb/sec SAS interfaces to create a complete SAS-interfaced physical LUN device. It can be ordered in capacities of 1.6TB and 3.2TB (base 10 capacities: 1.8TB and 3.5TB) of flash-based persistent storage capacity.

The second-generation FMD DC2 (see Figure 10) controller can support higher storage densities than traditional enterprise SSD configurations and is available in 1.6TB, 3.2TB and 6.4TB of 20nm MLC NAND flash (base 10 capacities: 1.8TB, 3.5TB and 7.1TB). This increase by eight times in supportable effective\(^3\) capacity translates into significant cost savings.

\(^3\) Based on 2:1 typical compression.
For information technology executives, who rely on trusted information technology, Hitachi is delivering a premier enterprise-class flash infrastructure. The new FMD DC2 delivers:

- Leading real application performance (large block I/O, writes), with up to three times read and five times sustained write performance over SSD.
- Lower effective cost, with 70% effective lower bit cost over MLC SSD.
- Superior consistent response times, with low latency enabling 99.6% of transactions completion within 1msec response.

While off-the-shelf SSDs are much faster than hard disk drives, at or near their limits, response time will spike up above the 5ms (see Intel SSD example, Figure 11).
How HAF Innovation Extends the Endurance of MLC Flash System

The frequency of writes determines the lifespan of flash. Hence, the number of times a NAND cell is subject to a write affects the flash storage's durability and reliability. This frequency equation is a law of flash physics, and such laws cannot be challenged. However, controller design can manage for this and extend the endurance of MLC NAND. Such is the case with the Hitachi enterprise-class flash module drive, or FMD.

The following are some of the techniques the development team has implemented to extend the endurance of flash in the FMD DC2. Additional discussion on these items will be presented in later sections.

- Error-correcting code (ECC) that occurs on every write operation has been extended to correct 59 bits per 2KB of compressed data. This correction enhances the ability to monitor the degradation of pages and avoids any premature page rewrites.

- The controller reads and recalculates the internal ECC on the complete FMD DC2 every two days and dynamically optimizes page refresh based on applied error correction.

- Logical-physical address conversion, to enable old data to be erased asynchronously, minimizes housekeeping tasks.

- Buffered write area, to reduce formatting for small writes, efficiently manages formatted page availability.

- Read/modify/write, for writes that are less than a page, minimizes the consumption of formatted pages.

- Data is refreshed at least every 30 days to avoid retention-time degradation.

- Zero data compaction reduces space from unnecessary writes by up to 94%.

- Wear leveling is done locally across the pages in a flash module and globally across all modules in a pool of flash modules. This approach distributes wear and extends the life of a flash module.

- 25% of the flash capacity is overprovisioned.

Figure 11. Intel SSD Response Time at Peak Load

![Intel SSD DC S3610 Quality of Service Specifications](image-url)
Overprovisioning

Overprovisioning is the practice of including flash memory above the advertised capacity. This overprovisioning increases the write endurance of the specified MLC flash memory capacity and its overall performance. FMD provides 25% overprovisioning.

Data Reliability

Each NAND memory block exhibits a different robustness for endurance. To manage this uneven wear characteristic, the FMD controller chip includes a dedicated "engine" that performs a memory-block-analysis function. This continuous scanning and diagnostic assessment of each NAND block effectively manages its optimal time for reclamation and ensures the expectations for enterprise data.

RAID

In addition to the NAND block protection, each FMD is protected by RAID. Options are RAID-1+0, RAID-5 and RAID-6; all options are managed by the Hitachi storage system.

Write Endurance Protection

Organizations using HAF are protected from FMD DC2 failure when covered under a maintenance service and support agreement. In addition, FMDs are covered by a five-year warranty.

Architecture Highlights

Embedded Flash Controller ASIC

An FMD DC2 is not an SSD. It is unique flash technology, developed from the ground up by Hitachi for enterprise workload to enable real application performance. It builds on the many flexibility, performance and reliability attributes already well known and appreciated in enterprise Hitachi storage. The brain of the FMD controllers is purpose-built to provide consistent, low latency and high performance with block I/O sizes used by enterprise applications. It includes a custom-designed ASIC (see Figure 12) featuring a quad-core processor with more than 60 million gates (double from prior generation), two co-processors (compression and parity offload) function and direct memory access (DMA) assist. The ASIC compute power drives up to eight times more channels and 16 times more NAND packages than typical 2.5-inch SSDs.
Using data from more than two billion hours of operation in the most demanding enterprise environments, Hitachi engineers have improved the ASIC algorithms to be more efficient, smarter and faster.

This ASIC (see Figure 13) is a quad-core, 1GHz, 32-bit processor complex. It provides unprecedented processing capability for a flash controller allowing FMDs to avoid the processing pitfalls of other flash controllers.

Embedded Flash Controller ASIC

1. Highly parallel architecture.
 - 8 lanes of PCIe.
 - PCIe root complex.
 - Patented flash logic that supports 32 paths to the flash storage.

2. A four times ARM processor complex that delivers more than sufficient compute power to manage multiple, parallel tasks and service concurrent I/Os.

3. Integrated DDR-3 interface.

An area of contention within most flash controllers is the number of paths that access the flash storage. Most controllers offer 8, 12 or perhaps 16 paths. Hitachi chose to incorporate 32 parallel paths, combined with the power and flexibility of the multicore processor. This approach enables the parallel processing of multiple tasks. It also allows the removal of housekeeping tasks from the I/O path (wear leveling, ECC, and so forth), eliminating the potential of host I/O blocking.

Eight lanes of PCIe v2.0 are integrated into the chip. The PCIe interface connects to an external SAS target mode controller, providing SAS interconnectivity. This host-side interface includes a full root complex capability. A state-of-the-art DDR3 memory interface completes the FMD controller ASIC.

Flash Controller Feature Highlights

High-Performance Flash Translation Layer

High-performance scaling is ensured with I/O aggregation, post compression, in 2KB logical page format and written in 16KB page in round-robin across 128 NAND packages over 32 channels. The FTL is built on a hierarchical structure of mapping tables that dynamically tie each LBA to a physical channel-package-block-page and keeps track of bad blocks and wear level count (see Figure 14). In support of real-time operations, dedicated data and control bus enables low consistency latency at peak load while memory bandwidth was improved to support (de)compression and parity offload traffic from dedicated co-processors.
Enterprise workloads typically include large block write I/Os; these requests are optimized with the wide stripping compressed data across several channel/NAND package into 16KB pages. Data transfers are assist by direct memory access engines that offload data copy in and out of memory. A typical 2:1 compression can provide as much as 50-200% performance boost due to the lower processing and bandwidth impact and because more free capacity is available for background tasks.

Inline Compression Offload

The ASIC also feature a new “always on” inline compression offload engine. It is a very-large-scale integration (VLSI) engine (see Figure 15) that enables lossless compression based on a derivative of the LZ77 sliding-window algorithm. The encoding is designed for high performance, using a small-memory footprint. It ensures T10 data integrity with (de)compress-read-verify function after compression/rehydration is completed (see Figure 16). Its parallel processing delivers real-time (de)compression using a systolic array-content addressable memory architecture, which ensures there is higher throughput, better efficiency and no lag that can create response time spike. The compression engine enables similar data reduction efficiency to the software compression algorithms found in other all flash arrays such as LZ4, LZ0, iGzip, zlib. The difference is that the FMD engine performs at 10 times the speed of other implementations and is run on the FMD, eliminating the storage array burden associated with typical software implementations on Intel core and/or journal-based file systems.

Flash Acceleration Offload

The compression engine enables similar data reduction efficiency to the software compression algorithms found in other all flash arrays such as LZ4, LZ0, iGzip, zlib. The difference is that the FMD engine performs at 10 times the speed of other implementations.

4 Requires an SVOS update available after initial release. Contact your HDS representative or partner for availability.
Figure 15. FMD DC2 ASIC Inline Compression Offload Engine

HAF FMD DC2 VLSI Compression/Decompression Offload
Parallel Processing Enables 10x Throughput vs. Intel Core

Compression/Decompression VLSI Logic

* HAF = Hitachi Accelerated Flash

Figure 16. FMD DC2 ASIC Inline Compression Data Integrity Operation

HAF FMD DC2 Lossless Compression Operation
T10 Data Integrity Field (DIF) Support

(De)compress-read-verify function ensures data integrity
Data reduction ASIC offload delivers the following benefits:

- Preserves processing resources on the controller to perform key storage array operations like host I/O and data protection functions like snapshot and replication without slowing down.
- Enables better system efficiency and scalability per Watt.
- Ensures consistent low response time even when processing large block I/O.

Block Write Avoidance

Not only does the flash controller chip manage 128 NAND packages, but also it supports a feature, called “block write avoidance,” to enhance write endurance and performance. Any data stream of all "0s" or "1s" is recognized by the algorithm, in real time, which remaps the data with a pointer. In the case of a parity group format, this technique can deliver up to a 94% savings in storage space. A beneficial side effect of this space savings is to effectively increase the overprovisioned area. This extra overprovisioning results in more efficiently run background tasks such as garbage collection and wear leveling and, most importantly, an improvement in the sustained write performance.

This feature not only drastically reduces format times, but also, by eliminating unnecessary write/erase cycles, it extends the effective life of the flash memory.

RAID Parity Offload

The FMD DC2 embedded ASIC features a RAID parity offload engine\(^5\) designed to address the most demanding aspect of enterprise workload: random write. Once enabled, the parity offload engine reduces the system overhead associated with write I/O and RAID parity update. In a typical RAID implementation, each write I/O requires that the system execute a read-modify process to ensure data protection is maintained. The system needs to read the all the data and parity drives in the same RAID stripe, compute the parity update and write the modified parity on the drive(s). The parity offload engine lowers the overhead by executing the parity calculation difference for each write I/O and in doing so reduces system I/O overhead by as much as 50%. This parity offload integration with Hitachi SVOS raises the VSP family random write performance by as much as 200%, without any hardware upgrade.

Workload Priority Access

This embedded flash controller feature integrates with SVOS, it is built on a multiqueue process, consistent share of channel to the NAND package. NAND chip resources are preserved for application workload when contention occurs (see Figure 17).

\(^5\) Requires an SVOS update available after initial release. Contact your HDS representative or partner for availability.
Smarter Garbage Collection

Smarter garbage collection also reduces NAND chip tasks load by enabling a block redistribution across multi-NAND targets (see Figure 18). This feature improves response time consistency and reduces I/O latency from background tasks that can create spikes in response times.
VMware vSphere End-to-End Quality of Service

With the new workload priority feature and SVOS VASA provider with VMware vSphere Virtual Volumes (VVols) and Storage I/O Control, VSP family systems can ensure end-to-end application workload quality of service or QoS (see Figure 19). QoS is assured from a virtual machine down to an individual NAND flash package or die, over typical flash background tasks such as garbage collection and data refresh.
Figure 19. FMD DC2 Smarter Garbage Collection Tasks

End-to-End Application Quality of Service With VMware vSphere

- Enabled by Hitachi Storage Provider for VMware vCenter, based on vSphere APIs for Storage Awareness (VASA) 2.0
 - Provides per-VM management and data services granularity
 - Offloads data services (snapshot, clone etc.)
 - Enables policy-based VM provisioning for precise provisioning of resources, supporting VMFS, NFS and VVol datastores
- Combines with VMware Storage I/O Control (SIOC) and DRS
 - Per VM datastore load balancing based on reservation/share/limit IOPS
- Augmented with Hitachi Accelerated Flash FMD DC2 and VSP family SVOS
 - Hitachi Dynamic Tiering, active flash for hybrid performance efficiency
 - Consistent response times, completing 99.6% of transactions in under a millisecond
 - Share of channel and MLC NAND chip resources are preserved for application workload when contention occurs
 - Smart garbage collection reduces NAND load by enabling a block redistribution across multi NAND targets

Flash Module Drive DC2 Feature Highlights

Write Cliff

The degradation of I/O processing when managing housekeeping tasks and/or when under heavy write workloads is a common occurrence with many flash controllers. Essentially, this degradation is an issue of processor schedule handling, where housekeeping tasks such as garbage collection and wear-leveling demands cause a block in the host I/O. Simply put, it is a symptom of a controller that does not have sufficient processor power to gracefully handle sustained high-performance write environments.

The write cliff is not a concern with the FMD, which bypasses the housekeeping tasks from the I/O path. This approach is possible thanks to use of a quad-core processor that has more than sufficient processing power.

Wear Leveling

Flash has a limited lifespan. An important characteristic of flash memory is that each write or erase cycle stresses the cell, causing a deterioration of the cell over time. Compounding this fact is the probability of an imbalance or a bias in cell activity, which creates an irregular distribution of these unstable cells.

Resident within the FMD is the necessary intelligence to minimize these challenges and to optimize the life of the NAND flash. The FMD controller monitors the rate of writes, erasures and refreshes to eliminate biased activity by balancing the rate of deterioration in the flash memory blocks. It then manages the physical data location with the best match between the I/O frequency on the data and the NAND flash block usage status.

This durability enhancement is achieved with wear-leveling management and is key in extending the useful lifetime of the NAND flash that populates the FMD.

Reliability Availability Serviceability (RAS)

To deliver the highest level of fault tolerance and provide a worry-free customer experience, the FMD DC2 includes numerous RAS functions that are tightly integrated with SVOS and the overall VSP architecture.
Specific to data integrity, the FMD DC2 leverages multiple layers of ECC error checking to ensure that data is written correctly and accurately preserved over time. The first level of ECC is done per transaction and provides end-to-end error checking through a custom eight bytes DIF appended to write I/O recorded on the FMD DC2 (see Figure 20).

To preserve the integrity of data writes, 112 bytes of ECC are appended for every 2KB of compressed data written. This action translates to each FMD ECC being able to correct up to 59 bits per 2KB, which exceeds the standard MLC spec of 40 bits per 1.1KB of data. It ensures that even if a bit error is discovered, it can be easily recovered.

Subsequent read I/Os are processed via a 112 bytes of ECC per 2KB compressed logical page on the FMD DC2 to confirm the integrity of the data.

Figure 20. FMD DC2 Error-correcting Code

As data is written and read, the system monitors key metrics about the hardware and NAND. For instance, wear levels are monitored, and when a NAND reaches 95% of its wear limit, we trigger an alarm. At 99% of the wear limit we trigger a sparing alert. These alerts can be used by the local administrator or the HDS customer support, via Hi-Track Remote Monitoring system reporting, to schedule a service activity before a failure occurs.

Power Loss Protection

The FMD DC2 includes a power loss protection (PLP) feature that protects data in storage devices against sudden power loss. During FMD DC2 operation, data is temporarily stored in the DRAM cache memory in the drive to reduce the performance gap between the host interface and the NAND flash package. Under normal operation, ongoing data destaging from the DRAM to the NAND flash memory updates the latest metadata and user data to ensure data integrity. In cases of unexpected sudden power loss, such as unplugging the power to the system without prior notification, unexpected power outages, or unplugging devices from the system, the destaging process cannot be completed and, depending on the type of cached data in the DRAM memory, sudden power loss can cause serious device failure. Therefore, PLP feature is a way to create more time for the data destaging process under sudden power-off situations by
using dedicated capacitor backup. The capacitor is charged during power-on timeframes and offers charged power to the FMD DC2 circuit when external power is off so that the data flush can be completed.

Adaptive Data Refresh

To catch bit errors quickly, the FMD will perform what is called a high frequency "adaptive" data refresh. This refresh is where the controller reads and recalculates the internal ECC on the entire FMD every two days and dynamically optimizes page refresh based on applied error correction. Note: To secure the integrity of previously written data, all data is rewritten at least every 30 days. This practice is key not only to extending flash cell longevity but also to improving the overall sustained performance.

Periodic Data Diagnosis or Recovery

A uniquely powerful integration of features occurs when HAF is used with one of the supported Hitachi storage systems. The data diagnostic and read retry functions of the FMD are partnered with the periodic data diagnostic and recovery functions resident within Hitachi storage controllers. If the bit errors exceed the ECC correction capability of the FMD, then the data is read out by the read retry function. This function adjusts the parameters of the flash memory and reads the data. The area is then refreshed, meaning that the data is read and copied to a different area before the data becomes unreadable.

High-Speed Formatting

The formatting is done autonomously in the FMD. This highly efficient process is completed in approximately five minutes, regardless of the number of drives to format. When compared to the 280 minutes that a similarly configured array of SSDs (22.4TB) would take, it is apparent that systems employing the FMD have a reduced install time.

Data Eradication

HDS offers a data eradication service that will physically erase all the user data on the device, including any bad blocks and the overprovisioning of spaces. After the eradication is done, every cell in the FMD DC2 is read to ensure that the eradication was completed successfully. The device data, such as wear leveling, is not eradicated, so it can continue to be used and the remaining warranty period is preserved. The service exceeds standards for U.S. National Institute of Standards and Technology (NIST) for data shredding.
Conclusion

IT departments have finite budgets. Thus, cost, along with robustness, have been the primary constraints that have limited a wider adoption of solid-state storage, particularly in the data center.

With these concerns in mind, Hitachi perceived the following challenges: How can we provide an enterprise-class, high-performance, robust, flash-based storage option that is highly resilient? And, how do we do so cost-effectively?

The Hitachi development team's answer was to create a purpose-built flash controller that exploits the attractively priced MLC NAND technology. At the same time, the controller delivers the performance, functionality, robustness and endurance expected in an enterprise-class solution.
Appendix: External References

- Hitachi IT Platform Division Group Engineering and Product Specifications.
- Toshiba, PX02SM Series Enterprise Mid Endurance SSD Product Manual.
- Samsung, SM1635 SSD Datasheet.
- Crystal Forest Platform: Intel Communications Chipset 8900 to 8920 Series Performance Brief, January 2014.
- IBM Real-time Compression in IBM® SAN Volume Controller and IBM Storwize® V7000.
- IBM Introducing and Implementing IBM® FlashSystem™ V9000.
- Intel, High Performance DEFLATE Compression on Intel Architecture Processors.
- GitHub.com compression benchmark results.
- Compression, IEEE.
- Micron, NAND Flash Memory –128Gb, 256Gb, 512Gb, 1Tb, 2Tb, Async/Sync, MLC Datasheet.
- Tim Canepa, Seagate, Flash Component Division, Anatomy of a high-performance hierarchical FTL Architecture; Flash Memory Summit 2015.